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THE GRAPHS OF EXPONENTIAL SUMS

J. H. LOXTON

§1. Introduction. In [3], D. H. Lehmer has analysed the incomplete Gaussian
sum

Gq(N) = £ e{f/q),

where N and q are positive integers with N < q and e(x) is an abbreviation for e2mx.
The crucial observation is that, for almost all values of N, Gq{N) is in the vicinity of
the point ^(1 +i)q112. This leads to sharp estimates of the shape Gq(N) = O(q12).

The behaviour of the Gaussian sum is typical of the exponential sum

S(N) = t e(f[J)) •

If N is restricted to an interval on which f"(x) is small, then S{N) is in the vicinity of
certain well-defined "condensation points" for almost all N. As f"(x) becomes larger,
the behaviour of S(N) becomes more and more random. The exponential sums
arising from f(x) = (logx)* illustrate these assertions very clearly. A rather
whimsical account featuring these particular sums may be found in [4]. On the other
hand, the Weyl sums with f(x) = <xxk and k > 2 are not amenable to this type of
approach.

The aim of this paper is to give a detailed description of the exponential sum

S(N,t) = £ e(tn112),
>,, = o

where N is a positive integer and f is a positive real number. This particular sum is of
interest because it effectively controls the size of the error term in the classical circle
and divisor problems. Thus, in his treatment of the circle problem, Landau [2], Satz
551, obtains the estimate

5(A/, t) — OyN'^N' t -\- N' ' t ' )),
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Figure 1. t = 05, 0 =£ N « 500.

Figure 2. r = 50, 20 s; N H 200.
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Figure 3. t = 500, 155 ^ JV < 515.

Figure 4. t = 5000, 420 < JV < 580.
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valid for any e > 0. The description of S{N, t) in terms of "condensation points"
works well for N ̂  t2li, as illustrated in Figures 1 and 2. These pictures are
explained by Theorems 1, 2 and 3. For smaller values of logN/logf, as in Figures 3
and 4, the "condensation points" no longer dominate the picture. However, by using
the method to analyse certain auxiliary sums, it is possible to improve Landau's
estimate for N ^ f34/73. This is done in Theorem 4. Further analysis along these lines
can be used to recapture Landau's result, giving a non-trivial estimate for S{N,t) for
N ^ f2/9, but it becomes more and more difficult to obtain such estimates as
log iV/log t decreases. It seems that quite different methods are required to deal with
the chaotic behaviour of the early terms in the sum.

I thank Scott Slack-Smith for locating the interesting pictures which inspired the
work reported here.

§2. The arcs. The smooth parts of the graphs will be explained by using the
Euler-Maclaurin summation formula to approximate the sum.

LEMMA 1. Let M and N be integers and suppose that the function j (x) has 2v+ 1
continuous derivatives on the interval M ^ x < N. Then

N

I fin) =
M

where

and the Bj and Bj{x) are the usual Bernoulli numbers and functions respectively.

See, for example, [5], Chapter 2, Section 7.

Eventually, the graph of S(N, t) settles down to a smooth expanding spiral
described by S(N~, t) ~ (Nll2/nit)e(tN112). This part of the graph is given more
precisely by the following theorem.

THEOREM 1. Fix e with 0 < c < 1. Let M and N be integers satisfying
f2/(i-f.) ^ M ^ N T n e n

S(N, t)-S(M, t) = — \Nll2e(tN112)-M1/2e(tM1/2)}
nit

+

The implied constant may depend on F. but not on M, N or t.
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Proof. Apply Lemma 1 to the function f(x) = e(tx112), taking v to be the least
integer greater than \/e. For 1 <: j ^ 2v+ 1 and M < x ^ N,

/<J)(x) = O((t/xll2)j + t/xj-(ll2)) = O(t/M112).

Consequently, the remainder Rv in Lemma 1 satisfies

/ r \
Rx = oi\ {(f /x1 / 2)2 v + ' + t/x2v+(1/2)}rf*) = 0{t/M112)

M

and
JV

S(N,t)-S(M,t) = £ e(m1/2)
n = M + 1

The integral here is elementary; indeed

,1/2

nit

and this leads to the estimate in the theorem.

Before reaching the final phase described in Theorem 1, the graph follows a
sequence of Cornu spirals. In fact, it is possible to identify a Cornu spiral
corresponding to each integer p in the range 1 < p < f2'3. The p-th Cornu spiral has
width proportional to t/p3!2 and is centred about the term with n x t2/4p2 in the
sum S(N, t). This is the substance of the next theorem. For the present purposes, the
Cornu spiral is the locus in the complex plane described by the point

s

r
C(s) = e{ — ̂ u2)du , — oo < s < oo .

o
See, for example, [1], Chapter 3, Section 4.

THEOREM 2. Fix v, with 0 < E < 1. Let p be a positive integer less than (f2/2)1/3

and set S = (p3/f2)':. Let M be the nearest integer to t2/4p2 and let N be an integer
satisfying f2/4(p + «5)2 ^ N ^ f2/4(p-<5)2. Then

S(N,t)-S(M,t) = -^e(t2/4p)C{2(pN)ll2-tfp112)
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Proof. Apply Lemma 1 to the function f(x) = e(txll2—px), taking v to be the
least integer greater than 1/28. Now fu\x) is a linear combination of terms of the
shape

u'(x)aiu"(x)"2u'"(x)ai... e(u(x)),

where u(x) = tx112 — px and a1,a2,a3,... are non-negative integers satisfying
at +2a2 + 3a3 + ... = j . Since uu\x) = O(t/xi~ai2)) for) > 2, the above term is

with k = a2 + a3 +.... Thus, for 0 < 7 ^ v and x between M and N,

/ (2y+l)/v.\ r\t 1 „ +/*) v l /2\2j + 1 1 *i" / (3//2) + 1 ^ f~\t £\
\X j — \J\\p — ij^X j ~T~ I X •" ' 1 — \J\O \ .

Since N — M = O(3t2/p3), the remainder Rv in Lemma 1 satisfies

N

Rv = 0 ( {^2v+1 + tv/x(3v/2)+l}dx ) = 0(3)

A M

and

S(N,t)-S(M,t)= Y.
n = M + l

JV
f

= e(txll2-px)dx+${e(tNll2)-e(tMll2)} + 0(3).
M

With the aid of the substitution u = 2pxll2 — t, this integral reduces to

where a = 2pMll2 — t and b = 2pNll2 — t. Here a = O(p2/t) and, by means of an
integration by parts,

e(-u2/4p)du =

so the lower terminal in the preceding integral can be shifted to 0. Finally,

N

t

~-{e(tNil2)-e(tMli2)}
Imp

t(2pMll2~t)

2p2

giving the estimate in the theorem.

e(tMh2) + O(p3/t2),
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§3. The condensation points. The mechanism responsible for the condensation
points in the graph is the same as that occurring in Lehmer's treatment of incomplete
Gaussian sums ([3], Theorem 3).

LEMMA 2. Fix 8 > 0. Let G be the graph formed by taking successive vertices
at the points S(n) = £„ sSi ^ ne(u(j)) for n = 0, 1, 2,. . . , N. Suppose that
8(n) = u{n+ 1) — u(n) is increasing and satisfies 3 ^ 3(n) ^ \for 1 ^ n ^ N. Then G
lies inside the circle F with radius j + jcosecno~ and centre S(0) + {j + jicotn5)e(ii{l)).

Proof. In going from the vertex S(n) to the next vertex S{n +1) of the graph, the
new edge makes an angle with respect to the previous edge of 2nd{n). If all the 5{n)
were equal to 8, then the vertices of G would lie on a circle of radius -|cosec n8 and
with the same centre as F. In fact, the successive edges of the graph turn more and
more inward until the graph is oscillating across a small circle of diameter close to 1.
To formalize this argument, it will be shown, by induction on N, that G lies inside
the circle with radius |coseC7i(5(l) + ^tan^7r^(N— I) —j tan jn8(]) and with the same
centre as F. This is clearly true when N = 2, since the three vertices then lie on the
required circle. Suppose it is true for the graph formed by the N vertices
S(l), S(2),..., S(N), and consider the effect of adding one extra vertex S(0). Let Ft and
F2 be the circles determined respectively by the points S(0), S(l), S(2) and
S(\), S(2), S(3). Then F2 lies inside 1^, except for the arc between S(l) and S(2) which,
at its centre, is a distance ^tan\nd(2) — jta.n^n5(l) outside F1. By the induction
hypothesis, the whole graph lies inside the circle with the same centre as F1 and
radius-2-cosec7i(3(l) + |tan^7rf)(iV—l) — ̂ tan^71(5(1), as required.

It is now easy to locate condensation points at the ends of each of the arcs
described in Theorem 2. There is a condensation point corresponding to each integer
p in the range 1 s£ p ^ f2'3; the p-th of these is centred about the term with
n * f2/4(p-i)2 in the sum S(N, t).

THEOREM 3. Fix e with 0 < e < 1. Let p be a positive integer less than (t2/2)1/3

and set 8 = (p3/t2)': Let M be the nearest integer to t2/4(p —^)2 and let N be an integer
satisfying t2/4(p-5)2 «S N ^ £2/4(p-l+<5)2. Then S(N,t) lies inside a circle with
centre S(M, t) and radius 1 +cosec7t(5.

Proof. Suppose first that N ^ M. Apply Lemma 2 to the graph corresponding
to the sum

M

S(M,t)-S(N,t)= X e(tnll2-pn).
n = JV+1

In the notation of the lemma,

8(n) = 4 f

lies between — \ and —S. The hypotheses of the lemma are satisfied, so all the
vertices of the graph lie inside a circle of radius j + jcosecnd. The same holds for the
graph obtained from the vertices with N ^ M. The union of these two circles is
contained within the circle specified in the theorem.
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§4. An auxiliary sum. The exponential sum

N

T(M,N;t,h)= X e(t(n + h)ll2-m112)
n = M+[

will be required in the next section. The graph of T(0, N; t, h) also exhibits a pattern
of spirals over the range f2/5 ^ N < r2/3, after which it tends towards a horizontal
line.

LEMMA 3. Fix e with 0 < s < 1 and suppose both t and h are positive.

(i) Let M and N be positive integers satisfying (thf2l3)[l~':) ^ M ^ N. Then

N

r
T(M,N;t,h) = e(t(x + h)112 -txm)dx + [}e{t(x + h)1'2 -txll2)~\N

M + O{th/M3'2).

M

(ii) Let p be a positive integer less that P = (t2h2/2)l/5 and set S = (p5/t2h2)'p.

(a) Let ^ = £p x (th/4p)213 be the positive root of the equation
x~112 — {x + hy112 = 2p/t. Let M be the nearest integer to £ and let N be an integer
such that \N-M\ ^ 3{t2h2/p5)113. Then

where u(x) = t(x + h)112 — txll2+px and a and b are defined by a2 — 4(u(M) — u(£))
andb2 = 4(u(N)-u(£J).

(b) Let M and N be positive integers between £,p and (th/43)213, such that the
interval M ^ x ^ N is disjoint from the intervals centred around the numbers £p which
have been considered in (a). Then \T(M, N; t, h)\ ^ 1 +cosec7r<5.

Proof (i) Apply Lemma 1 to the function f(x) = e(t(x + h)ll2-tx112), taking
v to be the least integer greater than l/3e. For 1 < j ^ 2v+ 1 and M ̂  x ^ JV,

= O(th/M312)
Thus

N

T(M,N;t,h) = I e{t(x + h)lj2 -txil2) d

M

The integral here is (N-M){\ + 0{t2h2/Mil2)} asM-»oo.

(ii) (a) Apply Lemma 1 to the function f(x) = e(t(x + h)1'2 — tx112 + px), taking
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v to be the least integer greater than 3/2E. For 0 ^ y < v and x between M and JV,

so

T(M,N;t,h) =

To deal with this integral, set u(x) = t(x + h)112 — txll2+px and expand u(x) about
x = c:

H ( X ) - U ( £ ) = ju"(£)(x-£)2 \l+ (x

where the series in parentheses is dominated by a power series in (x — £)/£. With the
change of variable given by v2 = 4(w(x) — w(£)), the integral becomes

where the series is dominated by a power series in iV£u"(£)1/2. The contribution to
the above expression from the terms indicated by the dots in the series is 0(3) and
the contribution from the term in v is

\_6niu

The remaining term of the series yields

b

~r,~T,2 e(u(c)) ( e(iv2)dv = - ^ ^ e{u(£))C(b)+ ^ y j l e(u(M)) + 0(3).

a

(ii) (b) Take u(x) as in (a) and set 3(n) = u(n+l) — u(n). If n falls in one of the
intervals considered here, then 3(n) either lies between — | and —5, or between 3 and
j . The required estimate for T(M, N; f, ft) therefore follows from Lemma 2.

LEMMA 4. Let M and N be positive integers with (th)2iS < M < JV < (f^)2, and
set H = N-M. Then

T(M, N; t, h) = O((f/i)1/2M-5/4min {H, M}) for M ^ (f/i)2'3, JV s$ (th)8'9

= O(N3!2(thyl) for M > (th)213.

Proof Suppose first that (th)215 ^ M ^ JV ^ (f/j)2'3. Take e, = { in Lemma
3 (ii). The width of the Cornu spiral centred on £p, in the notation of the lemma,
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together with the condensation points terminating the spiral, is O((th)ll3p'5/(>). Thus

T(M, N;t,h) = o( £ ( r / i ) 1 / 3p-5 / 6

= O ( ( r / i ) 1 / 2 J V r 5 / 4 m i n { / / , M } ) .

If, on the other hand, (th)2'3 «S M < TV s£ {th)2, then part (b) of Lemma 3(ii) with
8 = thN~312 gives T(M,N;t,h) = O(N3l2(th)~1). The lemma follows on combining
these two estimates.

§5. Estimates for S(N,t). The description of the graph of S(N,t) obtained in
Theorems 1 to 3 provides estimates for S{N, t) which are very good when JV is
sufficiently large with respect to t. It is still possible to obtain non-trivial estimates
for smaller values on JV by using the following lemma and the description of the sum
T(M, N; t, h) of the previous section.

LEMMA 5. Let M and N be integers with M =$ JV and set H = N — M. Then
H

\S{N,t)-S(M,t)\2 = H+ X T(M',N';t,h),
h = -H

h ± 0

where M' = max {M, M + h} and JV' = min {JV, N — h}.

Proof The left-hand side of the identity is

JV

X e(tnll2-tm112).
m.n = M+[

Setting n = m + h in this expression gives the right-hand side.

The next theorem gives the aforementioned estimates for S(N, t).

THEOREM 4. Let N be a positive integer. Then

S{N, t) = O(JV7/12f1/6), for t2'5 s£ JV = */( logr)3 / 2 ,

S(N, t) = O(JV1/4t1 /2), for f/(log f)3'2 s£ N < t2 ,

S(N,t) = 0{Nll2f1+t), for JV ̂  t2.

Proof. First, estimate S(N,t) — S(M,t) where the integers M and N satisfy
f25 ^ M < JV ̂  f/(log03'2 and H = N- M = O(M5/6f"1/3). By Lemma 5 and
Lemma 4,

= O(M5 / 6f"1 / 3) .
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Set Nj = [/'6/'2]- The above estimate can be applied on each of the intervals
(Nj,Nj+l) for f2'5 s=7 sC (f/logt)1''2- Thus

S(JV,f)-S([f2/s], f) = 0 X
IV' V 3

iV?/12r"1/6 =O(N 7 / 1 2 r7 / 1 2 r 1 / 6 )

This gives the first assertion of the theorem, since

S([f2 5 ] , f) = O(f2'5).

Next, suppose that the integer N satisfies f2/3 ^ TV < t2. Take e = ^ in Theorems
2 and 3. From these theorems, the width of the Cornu spiral centred on t2/4p2,
together with the condensation points terminating this spiral, is O(tp~32). Thus
S{N, f) —S([t2/3], f) is bounded by the sum of the widths of the spirals attached to the
integers p with tN~112 < p ^ t2/3, namely

S(/V,r)-S([f2/3],f) =

This gives the second assertion of the theorem.

tp -3 /2 = O(7V1/4t1/2).

In particular, the result just proved gives S([f2], t) = 0{t). By Theorem 3 with
£ = \ and p = 1, the graph of S(N, t) for t2 ^ N ^ t4 lies in a circle of radius f.
Again, the graph of S(N', t) for f4 s$ TV' < N lies in a circle of radius Nll2/t. This
gives the final assertion of the theorem.
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